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Abstract
As a substantial generalization of the technique for constructing canonical
and the related nonlinear and q-deformed coherent states, we present here a
method for constructing vector coherent states (VCS) in the same spirit. These
VCS may have a finite or an infinite number of components. The resulting
formalism, which involves an assumption on the existence of a resolution of
the identity, is broad enough to include all the definitions of coherent states
existing in the current literature, subject to this restriction. As examples, we
first apply the technique to construct VCS using the Plancherel isometry for
groups and VCS associated with Clifford algebras, in particular quaternions.
As physical examples, we discuss VCS for a quantum optical model and finally
apply the general technique to build VCS over certain matrix domains.

PACS numbers: 03.65.Db, 02.30.Sa, 02.20.−a

1. Introduction

Vector coherent states (VCS) are well-known mathematical and physical objects. In the
mathematical literature, the concept had its origin in the study of induced representations of
groups, constructed using vector bundles over homogeneous spaces and, in this context, has
been known for nearly 50 years (see, e.g., [8] and references to earlier work by Borel and
Weyl contained therein). In the physical literature, the idea was formulated and first studied
in connection with the use of the symplectic group for describing collective models of nuclei
[9, 11, 12, 14, 30, 32, 33]. A group theoretical understanding of vector coherent states, in terms
of induced representations, was developed in [34, 35] and later in [1]. Since their introduction,
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they have been widely used in a variety of symmetry problems in quantum mechanics and
comprehensive discussions of both theory and applications now exist in the literature (see,
e.g., [2, 20, 32]). While in most of the earlier work, the definition of vector coherent states
and their construction are group theoretical, it is possible, and indeed advantageous, to adopt a
wider definition of the concept. One such definition was adopted in [2], where vector coherent
states were extensively discussed and the wider definition was used to obtain large families of
new vector coherent states even in the group theoretical context. In the literature on ‘ordinary’
or ‘scalar’ coherent states, a number of different and non-equivalent definitions exist, one of
which is to define a coherent state as an ‘eigenstate’ of a generalized lowering operator (such
as for the so-called nonlinear coherent states, widely used in quantum optics and quantization
theory [15, 25, 27, 31]). However, not all coherent states can sensibly be defined in this
way. We give in this paper a much broader definition of vector coherent states (see (2.1)–
(2.5)), which of course also includes scalar coherent states within its scope. Our definition,
however, includes a resolution of the identity constraint (as expressed in (2.8), which follows
from assumption (2.2)). This latter condition was not generally assumed in earlier treatments,
although in cases where one had a square-integrable representation, such a condition was
automatically fulfilled (mathematically, this is a consequence of Plancherel’s theorem [24]).
With this additional assumption, our definition of a vector coherent state generalizes all the
various definitions now existing in the literature. We illustrate the usefulness of this definition
by a number of examples, some but not all of which can also be viewed as eigenstates of a
generalized lowering operator.

Going back for a moment to the well-known canonical coherent states, these are defined
as (see, e.g., [2, 22, 29]):

|z〉 = e− |z|2
2

∞∑
k=0

zk

[k!]
1
2

φk (1.1)

where the φk, k = 0, 1, 2, . . . ,∞, form an orthonormal basis in a (complex, separable,
infinite dimensional) Hilbert space H. The related deformed or nonlinear coherent states are
the generalized versions:

|z〉 = N (|z|2)− 1
2

∞∑
k=0

zk

[xk!]
1
2

φk (1.2)

where the generalized factorial xk! is the quantity, xk! = x1x2 · · · xk , for a sequence of positive
numbers, x1, x2, x3, . . . , and by convention, x0! = 1. The normalization factor N (|z|2) is
chosen so that 〈z|z〉 = 1. The coherent states form an overcomplete set of vectors in the
Hilbert space H; there is also the associated resolution of the identity,∫

D
dν(z, z)N (|z|2)|z〉〈z| = I (1.3)

where I denotes the identity operator on the Hilbert space H,D is a convenient domain of the
complex plane (usually the open unit disc, but which could also be the entire plane). The
measure dν is usually of the type dθ dλ(r) (for z = r eiθ ), where dλ is related to the xk! through
a moment condition (see, e.g., [36] for an exhaustive discussion of the moment problem):

xk!

2π
=
∫ L

0
dλ(r)r2k 1

2π
=
∫ L

0
dλ(r) (1.4)

L being the radius of convergence of the series
∑∞

k=0
zk√
xk!

. This means that once the quantities
ρ(k) = xk! are specified, the measure dλ is to be determined by solving the moment
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problem (1.4). An extensive literature exists on the construction of entire families of coherent
states of this type; as a small sampling, we might suggest [18, 23, 25, 27].

Quite generally, one can start with a function f (z), holomorphic in the open disc
D = |z| < L, and having a Taylor expansion of the type,

f (z) =
∞∑

k=0

z2k

ρ(k)
ρ(k) > 0 ∀ k ρ(0) = 1 (1.5)

where the sequence {ρ(k)}∞k=0 satisfies

lim
k→∞

ρ(k + 1)

ρ(k)
= L2 > 0. (1.6)

Then, writing xk = ρ(k)

ρ(k−1)
, for k � 1, and x0 = 0, the vectors

|z〉 = f (|z|)− 1
2

∞∑
k=0

zk

[xk!]
1
2

φk (1.7)

define a set of deformed or nonlinear coherent states for all z ∈ D which are not zeros of
f (z). The moment problem (1.4) is used to determine the measure dλ and then one has the
resolution of the identity,∫ 2π

0
dθ

∫ L

0
dλ(r)f (|z|)|z〉〈z| = I (1.8)

and normalization 〈z|z〉 = 1.
It is also known [6, 7, 28] that if the sum

∑∞
k=0

1√
xk

diverges then the above family of
coherent states is naturally associated with a set of polynomials {pk(x)}∞k=0, orthogonal with
respect to some measure dw(x) on the real line, which may then be used to replace the φk in
the definition (1.7) of the CS. To see this, define the generalized annihilation operator af by
its action on the vectors |z〉,

af |z〉 = z|z〉 (1.9)

and its adjoint a
†
f . Their actions on the basis vectors are easily seen to be

af φk = √
xkφk−1 a

†
f φk = √

xk+1φk+1. (1.10)

Using these we define the operators,

Qf = 1√
2

[
af + a

†
f

]
Pf = 1

i
√

2

[
af − a

†
f

]
(1.11)

which are the deformed analogues of the standard position and momentum operators. The
operator Qf has the following action on the basis vectors:

Qf φk =
√

xk

2
φk−1 +

√
xk+1

2
φk+1. (1.12)

If now the sum
∑∞

k=0
1√
xk

diverges, the operator Qf is essentially self-adjoint and hence has a
unique self-adjoint extension, which we again denote by Qf . Let Ex, x ∈ R, be the spectral
family of Qf , so that

Qf =
∫ ∞

−∞
x dEx.
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Thus there is a measure dw(x) on R such that on the Hilbert space L2(R, dw), the action
of Qf is just a multiplication by x. Consequently, on this space, the relation (1.12) assumes
the form

xφk(x) = bkφk−1(x) + bk+1φk+1(x) bk =
√

xk

2
(1.13)

which is a two-term recursion relation, familiar from the theory of orthogonal polynomials. It
follows that dw(x) = d〈φ0|Exφ0〉, and the φk may be realized as the polynomials obtained by
orthonormalizing the sequence of monomials 1, x, x2, x2, . . . , with respect to this measure
(using a Gram–Schmidt procedure). Let us use the notation pk(x) to write the vectors φk , when
they are so realized, as orthogonal polynomials in L2(R, dw). Then, for any w-measurable
set � ⊂ R,

〈φk|E(�)φ�〉 =
∫

�

dw(x)pk(x)p�(x) (1.14)

and

〈φk|φ�〉 =
∫

R

dw(x)pk(x)p�(x) = δk�. (1.15)

Also setting ηz = |z〉,

ηz(x) = f (|z|)− 1
2

∞∑
k=0

zk

[xk!]
1
2

pk(x) (1.16)

and then

G(z, x) = f (|z|) 1
2 ηz(x) =

∞∑
k=0

zk

[xk!]
1
2

pk(x) (1.17)

is the generating function for the polynomials pk . Note that in the original definition of the
CS in (1.7), the vectors φk were simply an arbitrarily chosen orthonormal basis in an abstract
Hilbert space H. As such, we may use any family of orthogonal polynomials to replace
them in (1.16) and then (1.17) would give the generating function for this set of polynomials.
However, the set obtained by using the recursion relations (1.13) is in a sense canonically
related to the family of CS |z〉.

In the present paper, we intend to extend several of these considerations to vector coherent
states. We emphasize once again, that while not all coherent states can be defined as eigenstates
of an annihilation operator, our definition of a vector coherent state, given in the following
section, generalizes all existing definitions, provided a resolution of the identity is assumed.

2. A general construction for VCS

Quite generally, vector coherent states are multicomponent coherent states, |x, i〉, where x
ranges through some continuous parameter space and i is a discrete index (which usually
takes a finite number of values). A method for constructing VCS over matrix domains, where
essentially, the variable z in (1.2) is replaced by a matrix-valued function, has been developed
in [38]. We adopt below a more general definition for such states, which will then include
(as special cases) the coherent states of the type mentioned above as well as all other types
of coherent states presently appearing in the literature, provided a resolution of the identity
condition is satisfied. In particular, elements from certain interesting matrix domains will be
used in place of z to build n-component VCS.
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We will denote our parameter space for defining VCS by X which will be a space with
a topology ( usually a locally compact space), equipped with a measure ν. Let H and K be
two (complex, separable) Hilbert spaces, of infinite or finite dimensions, which we denote by
dim(H) and dim(K), respectively. In H we specify an orthonormal basis {φk}dim(H)

k=0 and in K we
take an orthonormal basis {χi}dim(K)

i=1 . Let B2(K) denote the vector space of all Hilbert–Schmidt
operators on K. This is a Hilbert space under the scalar product

〈Y |Z〉2 = Tr[Y ∗Z] Y,Z ∈ B2(K)

Tr denoting the trace

Tr[Z] =
dim(K)∑

i=1

〈χi | Zχi〉.

Let Fk : X −→ B2(K), k = 0, 1, 2, . . . , dim(H), be a set of continuous mappings satisfying
the two conditions:

(a) for each x ∈ X,

0 < N (x) =
dim(H)∑

k=0

Tr[|Fk(x)|2] < ∞ (2.1)

where |Fk(x)| = [Fk(x)Fk(x)∗]
1
2 denotes the positive part of the operator Fk(x);

(b) if IK denotes the identity operator on K then∫
X

dν(x)Fk(x)F�(x)∗ = δk�IK k, � = 0, 1, 2, . . . , dim(H) (2.2)

the integral converging in the weak sense.

It is not hard to see that as a consequence of (2.1), for each x ∈ X, the linear map,
T (x) : K −→ K ⊗ H, defined by

T (x)χ = N (x)−
1
2

dim(H)∑
k=0

Fk(x)χ ⊗ φk χ ∈ K (2.3)

is bounded.
Vector coherent states, |x;χ〉 ∈ K ⊗ H, are now defined for each x ∈ X and χ ∈ K by

the relation

|x;χ〉 = T (x)χ = N (x)−
1
2

dim(H)∑
k=0

Fk(x)χ ⊗ φk. (2.4)

In particular, we single out the VCS

|x; i〉 := |x;χi〉 i = 1, 2, . . . , dim(K). (2.5)

For fixed x ∈ X, the |x; i〉 may not all be linearly independent and some may even be zero,
but any VCS |x;χ〉 can always be written as a linear combination,

|x;χ〉 =
dim(K)∑

i=1

ci |x; i〉 where χ =
dim(K)∑

i=1

ciχ
i ci ∈ C. (2.6)

Moreover, as we shall see below, the set of all VCS, as x runs through X and i =
1, 2, . . . , dim(K), constitutes an overcomplete family of vectors in K ⊗ H. Indeed, we have
immediately the result,

Theorem 2.1. The VCS |x; i〉 satisfy the
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(a) normalization condition,

dim(K)∑
i=1

‖|x; i〉‖2 = 1 (2.7)

and
(b) resolution of the identity,

dim(K)∑
i=1

∫
X

dν(x)N (x)|x; i〉〈x; i| = IK ⊗ IH (2.8)

the sum and the integral converging in the weak sense.

Proof. The proof is absolutely straightforward, however a quick demonstration is still in order.
For part (a)

dim(K)∑
i=1

‖|x; i〉‖2 =
dim(K)∑

i=1

〈x; i|x; i〉

= N (x)−1
dim(K)∑

i=1

dim(H)∑
k,�=0

〈χi |Fk(x)∗F�(x)χi〉〈φk|φ�〉

= N (x)−1
dim(K)∑

i=1

dim(H)∑
k=0

〈χi |Fk(x)∗Fk(x)χi〉.

Since all the terms within the summations are positive, the two sums may be interchanged and
then using (2.1) we immediately get (2.7). To prove part (b), let A denote the formal operator
represented by the sum and integral on the left-hand side of (2.8). Let χ, ξ ∈ K and φ,ψ ∈ H

be arbitrary. Then, from the definition of weak convergence we have

〈χ ⊗ φ | A(ξ ⊗ ψ)〉 =
dim(K)∑

i=1

∫
X

dν(x)N (x)〈χ ⊗ φ | x; i〉〈x; i | ξ ⊗ ψ〉

=
dim(K)∑

i=1

∫
X

dν(x)

[
dim(H)∑
k,�=0

〈χ |Fk(x)χi〉〈χi |F�(x)∗ξ 〉

× 〈φ|φk〉〈φ�|ψ〉
]
.

The boundedness of the operator T (x) in (2.4) and the fact that
∑dim(K)

i=1 |χi〉〈χi | = IK, allows
us to interchange the sum over i with the integral and the two sums over k and �. Thus

〈χ ⊗ φ | A(ξ ⊗ ψ)〉 =
∫

X

dν(x)

[
dim(H)∑
k,�=0

〈χ |Fk(x)F�(x)∗ξ 〉〈φ|φk〉〈φ�|ψ〉
]

.

Again, in view of the boundedness of T (x), the integral and the two summations in the
above expression can be interchanged. Next, taking account of (2.2) and the relation∑dim(H)

k=0 |φk〉〈φk| = IH we obtain

〈χ ⊗ φ | A(ξ ⊗ ψ)〉 = 〈χ |ξ 〉〈φ|ψ〉
proving (2.8). �
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There is a reproducing kernel, K : X × X −→ L(K) (bounded operators on K), naturally
associated with the family of VCS (2.4). It is given by

K(x, y) =
∞∑

k=0

Fk(x)∗Fk(y). (2.9)

Note that for each (x, y),K(x, y) is a bounded operator on K. It has the properties

K(x, y)∗ = K(y, x)∗ (2.10)∫
X

dν(y)K(x, y)K(y, z) = K(x, z) (2.11)

the integral relation (2.11) following immediately from (2.2) and (2.8). If in addition, the
kernel satisfies

〈χ | K(x, x)χ〉 > 0 ∀χ �= 0 (2.12)

that is, K(x, x) is a strictly positive operator, then the vectors (2.5) are linearly independent,
for each fixed x ∈ X.

3. Example based on the Plancherel isometry

Suppose that G is a locally compact group with type-I regular representation. Let U(g), g ∈ G

be a subrepresentation of the left regular representation, acting on the Hilbert space K. Assume
U(g) to be multiplicity free, such that it has the decomposition into irreducibles

U(g) =
∫ ⊕

�̂

dνG(σ )Uσ (g) K =
∫ ⊕

�̂

dνG(σ )Kσ (3.1)

where νG is the Plancherel measure on the dual Ĝ of the group and νG(�̂) < ∞. The
irreducible representations Uσ (g) are carried by the Hilbert spaces Kσ ; the measure νG could
have a discrete part so that the integrals in (3.1) could also include sums. There exists [13, 37]
on (νG-almost) all Kσ , a positive, self-adjoint operator Cσ , called the Duflo–Moore operator
with the property that if G is unimodular then Cσ is a multiple of the identity operator on Kσ ,
while if G is non-unimodular then it is a densely defined unbounded operator with densely
defined inverse. Set

C =
∫ ⊕

�̂

dνG(σ )Cσ (3.2)

and let Dom(C) denote its domain. Any vector χ ∈ K has components χσ ∈ Kσ and

‖χ‖2 =
∫ ⊕

�̂

dνG(σ )‖χσ‖2
σ

‖ · · · ‖σ denoting the norm in Kσ . Then, as a consequence of Plancherel’s theorem, for all
η, η′ ∈ Dom(C) and χ, χ ′ ∈ K, the following orthogonality relation holds [3]∫

G

dµ(g)〈U(g)η′|χ ′〉〈U(g)η|χ〉 =
∫

�̂

dνG(σ )〈Cσησ |Cση′
σ 〉〈χ ′

σ |χσ 〉 (3.3)

where dµ denotes the (left invariant) Haar measure of G. Thus, if we choose η = η′ and
satisfying ‖Cσησ‖2 = 1, for almost all σ ∈ �̂ (wrt the Plancherel measure νG), then we
obtain the resolution of the identity,∫

G

dµ(g)|U(g)η〉〈U(g)η| = IK. (3.4)
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(Note, if G is non-unimodular, each Cσ is an unbounded operator, and the condition
νG(�̂) < ∞ could be relaxed [16]. If however G is unimodular, each Cσ is a multiple
of the identity and the condition νG(�̂) < ∞ becomes necessary.)

Let ηk ∈ K, k = 0, 1, 2, . . . , dim(H), be mutually orthogonal vectors, chosen so that

(1) for each k, ηk ∈ Dom(C),

(2) for each k and almost all σ ∈ �̂,
∥∥Cσηk

σ

∥∥2 = 1.

Define

Vk(g) = 1

‖ηk‖U(g)|ηk〉〈ηk| ∈ B2(K). (3.5)

Then∫
G

dµ(g)Vk(g)V�(g)∗ = δk�IK and Tr[Vk(g)Vk(g)∗] = ‖ηk‖2 (3.6)

the first relation following from the orthogonality of the ηk and (3.4). Note that H is in general
an abstract Hilbert space, different from K; however, its dimension cannot exceed that of K.
Let us choose an orthonormal basis, {χi}dim(K)

i=1 in K, not necessarily related to the vectors
{ηk} and a second orthonormal basis, {φk}∞k=0 in H. In order to construct VCS, it is generally
necessary to add a second locally compact space R, equipped with a (Radon) measure λ, to
the group G. Let fk, k = 0, 1, 2, . . . , dim(H), be a sequence of continuous complex functions
in the Hilbert space L2(R, dλ) satisfying

(1) for all k, ‖fk‖2 = 1;
(2) for each r in the support of the measure λ,

0 �=
dim(H)∑

k=0

|fk(r)|2‖ηk‖2 < ∞. (3.7)

Let X = R × G and ν = λ ⊗ µ. Then, writing x = (r, g) and Fk(x) = fk(r)Vk(g), the
set

|x; i〉 = N (r)−
1
2

dim(H)∑
k=0

Fk(x)χi ⊗ φk x ∈ X i = 1, 2, . . . , dim(K) (3.8)

with

N (r) =
dim(H)∑

k=0

|fk(r)|2‖ηk‖2 (3.9)

is easily seen to define a family of VCS.
Note that taking H to be a one-dimensional space, the above type of VCS can be used to

derive the usual Gilmore–Perelomov CS or the sort of VCS discussed in [2].
As an explicit example, we construct a family of VCS of the above type using the principal

series representations of G = SU(1, 1) (�SL(2, R)). This group is unimodular; an element
g ∈ SU(1, 1) has the form

g =
(

α β

β α

)
α, β ∈ C |α|2 − |β|2 = 1.

In terms of the parametrization,

g = r(φ)a(t)r(ψ) 0 � φ � 2π −2π � ψ < 2π t ∈ R
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where

r(ϕ) =
(

e
iϕ
2 0

0 e− iϕ
2

)
a(t) =

(
cosh t

2 sinh t
2

sinh t
2 cosh t

2

)
the Haar measure is dµ = sinh t dt dφ dψ . Denote by Ureg the regular representation of this
group on L2(G, dµ):

(Ureg(g)f )(g′) = f (g−1g′) f ∈ L2(G, dµ).

For any unitary irreducible representation Uσ of SU(1, 1), acting on the Hilbert space Hσ , the
operator

Uσ (f ) =
∫

G

dµ(g)f (g)Uσ (g) f ∈ L1(G, dµ) ∩ L2(G, dµ)

is Hilbert–Schmidt and the Plancherel formula (see, e.g., [24]) may be written as∫
G

dµ(g)|f (g)|2 = 1

4π2

[∫ ∞

0
σ tanh πσ dσ

∥∥U(0)
σ (f )

∥∥2
2 +
∫ ∞

0
σ coth πσ dσ

∥∥U( 1
2 )

σ (f )
∥∥2

2

]

+
∑

n�1,n∈ 1
2 Z

2n − 1

8π2

[∥∥U+
n (f )

∥∥2
2 +
∥∥U−

n (f )
∥∥2

2

]
(3.10)

‖ · · · ‖2 denoting the Hilbert–Schmidt norm. In this formula, which essentially expresses
the decomposition of Ureg into irreducibles, the continuously labelled representations,
U(ε)

σ , ε = 0, 1
2 , σ ∈ R

+, are elements of the principal series, while the discretely labelled U±
n

are (almost all) elements of the discrete series (the ‘+’ corresponding to the holomorphic and
the ‘−’ to the anti-holomorphic representations). The complementary series of representations
constitute a set of Plancherel measure zero and hence do not appear in the above decomposition.
(This is a general feature of the theory of representations of non-compact semi-simple Lie
groups.)

The principal series representations U(ε)
σ are all carried by the Hilbert space H(ε)

σ �
L2(S1, dθ/2π), acting in the manner,(
U(ε)

σ (g)ψ
)
(eiθ ) = [−β eiθ + α]ε−

1
2 +iσ [−β e−iθ + α]−ε− 1

2 +iσψ(g−1 eiθ ) (3.11)

where

g−1 eiθ = α eiθ − β

−β eiθ + α
.

Let �̂ ⊂ R
+ have finite Plancherel measure, i.e.,

1

4π2

∫
�̂

dσσ tanh πσ < ∞

and consider the corresponding subrepresentation U of Ureg:

U(g) = 1

4π2

∫ ⊕

�̂

dσσ tanh πσU(0)
σ (g).

This representation is carried by the Hilbert space K = L2(�̂, σ tanh πσ dσ/4π2) ⊗
L2(S1, dθ/2π), with trivial action on the first space and the action (3.11) on the second.
For the vectors ηk we choose the Fourier orthonormal exponentials, eikθ , k ∈ Z:

ηk = I ⊗ |eikθ 〉 where I(σ ) = 1 ∀σ ∈ �̂.
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Following (3.5), the operators Vk now have the form

Vk(g) = 1

4π2

∫
�̂

dσσ tanh πσU(0)
σ (g)|eikθ 〉〈eikθ |

= 1

4π2

∫
�̂

dσσ tanh πσ | − β eiθ + α|2iσ−1|(g−1 eiθ )k〉〈eikθ | (3.12)

(where, with a slight abuse of notation, we have dropped an implicit tensor product). The
integration over σ can be performed explicitly:∫

�̂

dσσ tanh πσ | − β eiθ + α|2iσ

=
eσZ

 σ

Z
+

3

Z2
+ 2
∑
n�1

(−1)n
[

σ

Z − 2n
+

1

(Z − 2n)2

]
e−2nσ


∂�̂

Z = 2i ln |−β eiθ + α|. (3.13)

Next, we choose an arbitrary orthonormal basis {χi}i∈Z
+ in K and a second orthonormal basis

{φk}k∈Z in H. Furthermore, to avoid divergence of the normalization factor, we adopt the
following choice of vectors {fk}k∈Z ⊂ L2(R, dλ) (see (3.7)): we take R = R, dλ(r) =√

ε
π

e−εr2
dr , where ε > 0 is a constant and

fk(r) = ekr e− k2

2ε . (3.14)

Thus, the normalization constant N satisfies

0 < N (r) =
∑
k∈Z

|fk(r)|2‖ηk‖2 =
∑
k∈Z

e2kr e− k2

ε < ∞ (3.15)

and is simply related to the theta function of the third kind.
Collecting all these, we can finally write down the VCS as

|x; i〉 = N (r)−
1
2

∑
k∈Z

ekr e− k2

2ε Vk(g)χi ⊗ φk x = (r, g) ∈ R × SU(1, 1) i ∈ Z
+ (3.16)

with Vk(g) given by (3.12) and (3.13).

4. Example based on Clifford algebras

We take the simplest case of a Clifford algebra C�(Rd), of R
d . This is the smallest algebra

extending R
d (a concise discussion on Clifford algebras may, for example, be found in [21]).

We thus have a linear map, C : R
d −→ C�(Rd), such that

C(v)2 = ‖v‖2IC v ∈ R
d (4.1)

IC denoting the identity in the algebra. Let eα, α = 1, 2, . . . , d , be the canonical basis of R
d ,

in terms of which v = ∑d
α=1 vαeα, vα ∈ R, and we write C(eα) = Cα . Then it follows from

(4.1) that

{Cα, Cβ} = CαCβ + CβCα = 2δαβIC (4.2)

and generally

{C(v1), C(v2)} = 2v1 · v2IC . (4.3)

We denote the unit sphere of R
d by Sd−1 and points on it by v̂, ‖̂v‖ = 1. Then,

C( v̂ )2 = IC . Suppose that we have a representation of the algebra C�(Rd), by N × N
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matrices, C(v) �−→ H(v), so that H(v)2 = ‖v‖2
IN . We also assume that the generating

matrices Hα = H(eα), α = 1, 2, 3, . . . , d, are Hermitian.
Identifying R

d with R
+ × Sd−1, we shall use polar coordinates to parametrize its points:

v = (r, θ, φ) r ∈ R
+ θ = (θ1, θ2, . . . , θd−2) ∈ [0, π ]d−2 φ ∈ [0, 2π). (4.4)

The connection with the Cartesian coordinates v = (v1, v2, . . . , vd) is then given by the
well-known equations,

v1 = r sin θd−2 sin θd−3 · · · sin θ1 cos φ

v2 = r sin θd−2 sin θd−3 · · · sin θ1 sin φ

...

vi = r sin θd−2 · · · sin θi−1 cos θi−2 3 � i � d − 1
...

vd = r cos θd−2. (4.5)

Thus, ‖v‖ = r and

v = r cos θd−2ed + r sin θd−2e( n̂ ) (4.6)

where n̂ is the vector in Sd−2

n̂ =



n1

n2

...

ni

...

nd−1


=



sin θd−3 · · · sin θ1 cos φ

sin θd−3 · · · sin θ1 sin φ

...

sin θd−3 · · · sin θi−1 cos θi−2

...

cos θd−3


(4.7)

and e( n̂ ) = n1e1 + n2e2 + · · · + nd−1ed−1. The Lebesgue measure on R
d is rd−1 dr d�(θ, φ),

where d� is the SO(d) measure on Sd−1:

d�(θ, φ) =
d−1∏
i=2

sind−i θd−i dθd−i dφ (4.8)

with total ‘surface area’:∫
Sd−1

d�(θ, φ) = 2π
d
2

�
(

d
2

) . (4.9)

Going back now to the construction of VCS, using the Clifford algebra C�(Rd), we take
X = S1 × R

d and, with each element x = (ξ, v) ∈ X, we associate the N × N matrix,

Z(x) = Z(ξ, v) = r[cos ξIN + i sin ξH( v̂ )] r = ‖v‖ v̂ ∈ Sd−1. (4.10)

Since H( v̂ )2 = IN , we get (for any integer k),

Z(ξ, v)k = rk[cos(kξ)IN + i sin(kξ)H( v̂ )] = rk eikξH( v̂ ) (4.11)

and

Tr[(Z(ξ, v)k)∗Z(ξ, v)k] = Nr2k. (4.12)

Let H be a complex (separable) Hilbert space and {φk}dim(H)
k=0 an orthonormal basis of it. Let K

denote the (N-dimensional) vector space of the representation of the Clifford algebra C�(Rd)
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and let χi, i = 1, 2, . . . , N , be an orthonormal basis of K. We fix a sequence of non-zero,
positive numbers, {xk}dim(H)

k=0 , with the property that the series
∑dim(H)

k=0
yk√
xk !

, y ∈ R, converges

in some non-empty interval, |y| < L and suppose that dλ is a measure on R
+, which satisfies

the moment problem∫ L

0
dλ(r)r2k = �

(
d
2

)
4π

d+2
2

xk! k = 0, 1, 2, 3, . . . , dim(H). (4.13)

Then, defining

Fk(x) = 2π
d+2

4[
�
(

d
2

)] 1
2

Z(x)k√
xk!

(4.14)

we see that∫ 2π

0

∫ L

0

∫
Sd−1

dξ dλ(r) d�Fk(x)F�(x)∗ = δk�IN k, � = 0, 1, 2, 3, . . . , dim(H). (4.15)

Thus, we have the result:

Theorem 4.1. The vectors,

|Z(x); i〉 = N (r)−
1
2

dim(H)∑
k=0

Z(x)k√
xk!

χi ⊗ φk N (r) = 4Nπ
d+2

2

�
(

d
2

) dim(H)∑
k=0

r2k

xk!
(4.16)

i = 1, 2, . . . , N , define a set of VCS in K⊗H, for x = (ξ, r, (θ, φ)) ∈ [0, 2π)×[0, L)×Sd−1.
These satisfy the resolution of the identity,

N∑
i=1

∫ 2π

0

∫ L

0

∫
Sd−1

dξ dλ(r) d�(θ, φ)|Z(ξ, r, θ, φ); i〉〈Z(ξ, r, θ, φ); i| = IN ⊗ IH. (4.17)

The particular case of quaternions will be discussed in some detail in the following two
sections.

5. A class of physical examples

The following example is of relevance to the study of the spectra of two-level atomic systems
placed in electromagnetic fields [5, 10]—the Jaynes–Cummings model in quantum optics is of
this general type. Suppose that H is the Hamiltonian of a two-level atomic system and assume
that its eigenvalues constitute two discrete infinite series of positive numbers (corresponding
to the two levels). Assume also that there is no degeneracy and that the energy eigenvalues
are ordered as follows:

0 < εi
0 < εi

1 < εi
2 < · · · εi

k < · · · i = 1, 2. (5.1)

Let ψi
k, i = 1, 2, k = 0, 1, 2, . . . ,∞, be the corresponding eigenvectors, which are assumed

to constitute an orthonormal basis of the Hilbert space HQM of the quantum system.
Let H be an abstract, complex (separable), infinite-dimensional Hilbert space and {φk}∞k=0
an orthonormal basis of it. Consider the Hilbert space C

2 ⊗ H; the set of vectors,
χi ⊗ φk, i = 1, 2; k = 0, 1, 2, . . . , where

χ1 =
(

1

0

)
χ2 =

(
0

1

)
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forms an orthonormal basis of this Hilbert space. Define the unitary map, V : HQM −→
C

2 ⊗ H, such that, V ψi
k = χi ⊗ φk . Formally, this operator can be written as

V =
2∑

i=1

∞∑
k=0

|χi ⊗ φk〉
〈
ψi

k

∣∣. (5.2)

Writing HD = V HV −1, we see that HD can be expressed in terms of two self-adjoint
operators, H1,H2, on H in the manner,

HD =
(

H1 0
0 H2

)
where Hiφk = εi

kφk i = 1, 2 k = 0, 1, 2, . . . . (5.3)

Next define the two sets of numbers, xk = ε1
k − ε1

0, yk = ε2
k − ε2

0, k = 0, 1, 2, . . . . For z,w

complex numbers, let L1 be the radius of convergence of the series
∑∞

k=0
zk

[xk !]
1
2

and L2 that of∑∞
k=0

wk

[yk !]
1
2

. Define the domain

D = {(z, w) ∈ C × C | |z| < L1 |w| < L2}.
Let dλi, i = 1, 2, be two measures on R

+ which satisfy the moment problems∫ L1

0
dλ1(r)r

2k = xk!

2π

∫ L2

0
dλ2(r)r

2k = yk!

2π
k = 0, 1, 2, . . . (5.4)

and with z = r1 eiθ1 , w = r2 eiθ2 , define the measure dν = dλ1(r1) dλ2(r2) dθ1 dθ2. Note that∫
D

dν = 1.

Finally define the 2 × 2 matrices,

R(k) =
(

xk! 0
0 yk!

)
k = 0, 1, 2, . . . Z =

(
z 0
0 w

)
(z, w) ∈ D. (5.5)

Note that the matrices R(k) are positive and invertible. Setting

Fk(Z) = R(k)−
1
2 Zk k = 0, 1, 2, . . . (5.6)

it is straightforward to verify that∫
D

dν(Z)Fk(Z)F�(Z)∗ = I2δk�. (5.7)

This leads to the result:

Theorem 5.1. The set of vectors,

|Z; i〉 = N (Z)−
1
2

∞∑
k=0

R(k)−
1
2 Zkχi ⊗ φk ∈ C

2 ⊗ H (5.8)

where

N (Z) =
∞∑

k=0

Tr[Fk(Z)∗Fk(Z)] =
∞∑

k=0

(
r2k

1

xk!
+

r2k
2

yk!

)
(5.9)

is a family of VCS. They satisfy the resolution of the identity,

2∑
i=1

∫
D

dν(Z)N (Z)|Z; i〉〈Z; i| = I2 ⊗ IH. (5.10)
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The above construction can be extended to include a dependence of the coherent states on
SU(2) parameters as well. Indeed, going back to (5.6), let X = D × SU(2); denote elements
in SU(2) by u and elements in X by x = (Z, u). Set

Fk(x) = uR(k)−
1
2 Zku∗ x ∈ X. (5.11)

Denote by dµ the invariant measure on SU(2), normalized to one, and redefine dν as
dν(x) = dλ1(r1) dθ1 dλ2(r2) dθ2 dµ(u). Then, clearly∫

X

dν(x)Fk(x)F�(x)∗ = I2δk�. (5.12)

Thus, the coherent states

|x; i〉 = N (Z)−
1
2

∞∑
k=0

Fk(x)χi ⊗ φk

= N (Z)−
1
2

∞∑
k=0

uR(k)−
1
2 Zku∗χi ⊗ φk ∈ C

2 ⊗ H (5.13)

with N (Z) as in (5.9), are well-defined and satisfy the expected resolution of the identity:
2∑

i=1

∫
X

dν(x)N (Z)|x; i〉〈x; i| = I2 ⊗ IH. (5.14)

Finally, it is interesting to replace the matrix Z in (5.5) by

Z = u

(
z 0
0 z

)
u∗ u ∈ SU(2) (5.15)

and R(k) by R(k) = xk! I2. Since a general SU(2) element can be written as u = uφ1uθuφ2 ,
where

uθ =
(

cos θ
2 i sin θ

2

i sin θ
2 cos θ

2

)
uφi

=
(

ei φi
2 0

0 e−i φi
2

)
0 < φi � 2π 0 � θ � π (5.16)

we easily get

Z = Z(z, z, n̂ ) = r[cos ξ I2 + i sin ξ σ ( n̂ )] (5.17)

where we have written

z = r eiξ n̂ =
sin θ cos φ

sin θ sin φ

cos θ

 σ( n̂ ) =
(

cos θ eiφ sin θ

e−iφ sin θ −cos θ

)
φ = φ1.

(5.18)

The associated coherent states are

|Z(z, z, n̂ ); i〉 = N (r)−
1
2

∞∑
k=0

Z(z, z, n̂ )k√
xk!

χi ⊗ φk N (r) = 2
∞∑

k=0

r2k

xk!
(5.19)

with the resolution of the identity,

1

4π

2∑
i=1

∫ L

0
dλ(r)

∫ 2π

0
dξ

∫ 2π

0
dφ

∫ π

0
sin θ dθ N (r)|Z(z, z, n̂ ); i〉〈Z(z, z, n̂ ); i| = I2 ⊗ IH

(5.20)

the measure dλ, the radius of convergence L and the xk! being related by the moment problem
in (1.4). If ξ is restricted to [0, π), the resulting set of matrices Z(z, n̂ ) yield the 2×2 complex
realization of the quaternions. Consequently, for xk = k the coherent states defined in (5.19)
are just the canonical quaternionic coherent states obtained in [38]. We shall generally refer
to the vectors (5.19) as quaternionic coherent states.
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6. Some analyticity properties

It is well known that the resolution of the identity in (1.3) enables one to map the Hilbert space
H, of the coherent states |z〉, unitarily to a Hilbert space of functions which are analytic in the
variable z. This is done via the mapping W : H −→ L2

a-hol(D, dν),

(Wφ)(z) = N (r)
1
2 〈z|φ〉 =

∞∑
k=0

ckz
k ck = 〈φk|φ〉

[xk!]
1
2

(6.1)

where L2
a-hol(D, dν) is the Hilbert space of all functions holomorphic in z and square integrable

with respect to the measure dν. The basis vectors φk are mapped in this manner to the
monomials zk

/
[xk!]

1
2 , and the state |z〉 itself to the function

K(z′, z) = [N (r ′)N (r)]
1
2 〈z′|z〉 =

∞∑
k=0

(z′z)k

xk!
(6.2)

in the variable z′. Moreover, considered as a function of the two variables z and z′,K(z′, z) is
a reproducing kernel (the analogue of (2.9)), satisfying∫

D
dν(z′, z′)K(z, z′)K(z′, z′′) = K(z, z′′). (6.3)

It is interesting to perform a similar transformation for the quaternionic coherent states in
(5.19), exploiting the resolution of the identity (5.20). We identify the domain of the variables
(z, z, n̂ ), appearing in Z(z, z, n̂ ), with D × S2 and on it define the measure dν(z, z, n̂ ) =
1/4π dλ(r) dξ dφ sin θ dθ . Consider the map, W : C

2 ⊗ H −→ C
2 ⊗ L2(D × S2, dν),

(WΨ)i(z, z, n̂ ) = N (r)
1
2 〈Z(z, z, n̂ ), i|Ψ〉 i = 1, 2. (6.4)

Here Ψ ∈ C
2 ⊗ H is a vector of the form, Ψ = ∑2

�=0 χ�ψ�, with ψ1, ψ2 ∈ H. In view of
(5.20), the above map is an isometric embedding of the Hilbert space C

2 ⊗ H onto a closed
subspace of C

2 ⊗ L2(D × S2, dν). We denote this subspace by Hquat and elements in it by
F =∑2

i=0 χiFi . Then

Fi (z, z, n̂ ) = 〈χi |F(z, z, n̂ 〉
C

2 = 〈Z(z, z, n̂ ), i|Ψ〉
C

2⊗H

=
2∑

�=0

∞∑
k=0

χi †u( n̂ )

(
zk√
xk !

0

0 zk√
xk !

)
u( n̂ )∗χ�〈φk|ψ�〉 (6.5)

where we have introduced the matrix,

u( n̂ ) = uφuθ =
(

ei φ

2 cos θ
2 i ei φ

2 sin θ
2

i e−i φ

2 sin θ
2 e−i φ

2 cos θ
2

)
. (6.6)

Next let us introduce the two projection operators on C
2:

P1( n̂ ) = u( n̂ )

(
1 0
0 0

)
u( n̂ )∗ =

(
cos2 θ

2 −i eiφ sin θ
2 cos θ

2

i e−iφ sin θ
2 cos θ

2 sin2 θ
2

)
P2( n̂ ) = I2 − P1( n̂ )

(6.7)

and the holomorphic functions f�(z), along with their anti-holomorphic counterparts f�(z),

f�(z) =
∞∑

k=0

zk

√
xk!

〈φk|ψ�〉H f(z) =
2∑

�=1

χ�f�(z)

f�(z) =
∞∑

k=0

zk

√
xk!

〈φk|ψ�〉H f(z) =
2∑

�=1

χ�f�(z).

(6.8)
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Then, it is easy to see that (6.5) yields the expression

F(z, z, n̂ ) = P1( n̂ )f(z) + P2( n̂ )f(z). (6.9)

Thus, for fixed n̂, the component function Fi(z, z, n̂ ) is a linear combination of two
holomorphic functions f1(z), f2(z) and their antiholomorphic counterparts.

Finally, we might note that the reproducing kernel (2.9) in this case is a 2×2 matrix-valued
kernel:

K(z′, z′, n̂′; z, z, n̂ ) =
∞∑

k=0

1

xk!
[Z(z′, z′, n̂′)∗]kZ(z, z, n̂ )k (6.10)

with matrix elements,

K(z′, z′, n̂ ′; z, z, n̂ )ij = [N (r ′)N (r)]
1
2 〈Z(z′, z′, n̂ ′); i|Z(z, z, n̂ ); j 〉 (6.11)

and satisfying∫
D×S2

dν(z′, z′, n̂ ′)K(z, z, n̂; z′, z′, n̂ ′)K(z′, z′, n̂ ′; z′′, z′′, n̂ ′′) = K(z, z, n̂; z′′, z′′, n̂ ′′).

(6.12)

Also, in this case, the matrix K(z, z, n̂; z, z, n̂ ) is strictly positive definite for each z, z and n̂.

7. Examples using matrix domains

Our last set of examples involve some matrix domains, which parallel and in some cases
include the results of section 4 as well. As the first example of this type, let On be the unit
ball (with respect to the operator norm) of the space of all n × n complex matrices:

On = {Z ∈ C
n×n|In − ZZ∗ is positive definite}.

Let ν be a finite measure on On such that

dν(εZ) = dν(Z) ∀ε ∈ U(1) (7.1)

and

dν(V ZV ∗) = dν(Z) ∀V ∈ U(n). (7.2)

(For example, one may take dν(Z) = det[In − Z∗Z]α dZ, where α � 0 and dZ is the Lebesgue
measure on C

n×n, or any other measure depending only on the singular values of Z (see
below).) Let

Xk� :=
∫
On

ZkZ∗� dν(Z). (7.3)

Then by (7.1)

Xk� =
∫
On

(εZ)k(εZ)∗� dν(Z) = εk−�Xk�

for all ε ∈ U(1), implying that Xk� = 0 if k �= �. Furthermore, by (7.2)

Xkk =
∫
On

(V ZV ∗)k(V ZV ∗)k dν(Z)

=
∫
On

V ZkZ∗kV ∗ dν(Z)

= V XkkV
∗
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so [Xkk, V ] = 0 for all V ∈ U(k). This implies that Xkk = qkIn for some qk ∈ C. Plainly
qk > 0, since the integrand in (7.3) is positive definite for k = �. Thus we can take

Fk(Z) := q
−1/2
k Zk = Zk

√
xk!

xk = qk

qk−1
(7.4)

with the assumption that dν has been normalized so that q1 = 1. The normalization condition
(2.1) takes the form

N (Z) =
∑

k

Tr[Z∗kZk]

xk!
< ∞. (7.5)

We claim that this holds, for all Z ∈ On, as soon as the support of ν is all of On. To see this,
recall that any n × n matrix Z can be written in the form

Z = V · diag(r1, . . . , rn) · W ∗ (7.6)

where V,W ∈ U(n) and 0 � rn � · · · � r1 = ‖Z‖ are the singular numbers of Z (i.e.
eigenvalues of ZZ∗); the unitary matrices V,W need not be uniquely determined by Z (they
are iff all the rj are different), but the diagonal part is. We then have

rn‖v‖ � ‖Zv‖ � r1‖v‖ ∀ v ∈ C
n.

Taking v to be a unit vector, it follows that

qk = 〈v | Xkkv〉C
n =

∫
On

‖Zkv‖2 dν(Z) (7.7)

satisfies ∫
On

rn(Z)2k dν(Z) � qk �
∫
On

r1(Z)2k dν(Z).

Taking kth roots and using the fact that ‖f ‖Lk(dν) → ‖f ‖L∞(dν) for any finite measure ν, we
see that

‖rn‖2
L∞(dν) � lim inf

k→∞
q

1/k

k � lim sup
k→∞

q
1/k

k � ‖r1‖2
L∞(dν).

Thus if supp ν = On, then limk→∞ q
1/k

k = 1. Since Tr[Z∗kZk] � n‖Z∗kZk‖ � n‖Z‖2k , it
follows that the series (7.5) converges ∀ Z ∈ On.

Explicitly, for the matrix domain On we then have the VCS,

|Z; i〉 = N (Z)−1
∞∑

k=0

Zk

√
xk!

χi ⊗ φk Z ∈ On (7.8)

where N (Z) is given by (7.5), the χi form an orthonormal basis in C
n and xk is given via (7.4)

and (7.7). The reproducing kernel,

K(Z∗;Z′) =
∞∑

k=0

[Z∗]k[Z′]k√
xk!

(7.9)

is an n × n matrix kernel, with K(Z∗;Z) > 0, for all Z.
For measures ν for which (7.5) fails, one can again save the situation by the same trick as

in section 3: namely, fix some measure space (R, dr), consider X = R × On, and set

Fk(x) = fk(r)q
−1/2
k Zk x = (r,Z) ∈ X

with some fixed unit vectors fk ∈ L2(R, dr). Then once again∫ ∫
R×On

Fk(x)F�(x)∗ dr dν(Z) = δk�In
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provided the fk are chosen so that the condition (7.5)

N (x) =
∑

k

|fk(r)|2q−1
k Tr[Z∗kZk] < ∞ ∀(r,Z) ∈ X

is satisfied. This can always be achieved, no matter what qk and Tr[Z∗kZk] are.

Remarks.

1. The last example can also be generalized to any domainO ⊂ C
n×n which is invariant under

the transformations Z �→ V ZW ∗,∀ V,W ∈ U(n), and any measure ν on O satisfying
(7.1) and (7.2) and such that

∫
O ‖Z∗�Zk‖dν(Z) is finite ∀ (k, �). The condition (7.5) is

satisfied whenever supp ν = O; otherwise one again needs to introduce the auxiliary
measure space R.

2. We can also deal in the same way with the case when O is the unit ball of n × n complex
symmetric or anti-symmetric matrices, i.e. one of the domains

Osym
n := {Z ∈ C

n×n | ‖Z‖ < 1 and ZT = Z}
Oa-sym

n := {Z ∈ C
n×n | ‖Z‖ < 1 and ZT = −Z}.

In this case, (7.2) should be required to hold only for all symmetric unitary matrices V ;
then the argument after (7.3) implies that [Xkk, V ] = 0 for all such matrices, which is still
sufficient for concluding that Xkk is a multiple of the identity since Xkk must now also be
a symmetric matrix.

3. Observe that if we require, instead of (7.2), that dν(V ZW ∗) = dν(Z),∀ V,W ∈ U(n),
then it follows from (7.6) that dν admits the measure disintegration,

dν(Z) = dµ(r1, . . . , rn) d�n(V ) d�n(W)

(with Z decomposed as in (7.6)), where d�n is the Haar measure on U(n) and dµ some
measure on R

n invariant under permutations of the coordinates. This is reminiscent of
the ‘polar decomposition’ (4.11).

We propose to report on these cases in a future publication. However, as one last
interesting example, consider the set, Onor

n of all n×n complex, normal matrices, i.e., matrices
Z satisfying Z∗Z = ZZ∗. Such a matrix has the decomposition,

Z = V · diag(r1 eiθ1 , r2 eiθ2 , . . . , rn eiθn ) · V ∗ V ∈ U(n) ri � 0 0 � θi < 2π. (7.10)

Let λi, i = 1, 2, . . . , n, be a set of positive measures on R
+, satisfying the moment problems∫ Li

0
dλi(r)r

2k = xi
k!

2π
i = 1, 2, . . . , n (7.11)

where, for fixed i, xi
k! = xi

1x
i
2 · · · xi

k, x
i
0! = 1 and xi

1 = 1. Also, we assume as usual, that

Li > 0 is the radius of convergence of the series
∑∞

k=0
yk√
xi

k!
. With d�n the Haar measure on

U(n) (normalized to one), define the measure dν and the domain D by

dν(Z) =
n∏

i=1

dλi(ri) dθi d�n(V ) D =
n∏

i=1

[0, Li) × [0, 2π)n × U(n). (7.12)

Let us calculate the integral

Xk� =
∫
D

dν(Z)ZkZ∗�. (7.13)

We have the result:
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Lemma 7.1.

Xk� = 1

n

n∑
i=1

xi
k!δk�In. (7.14)

Proof. Using the decomposition (7.10), the definition of the measure and domain in (7.12)
and the moment equations (7.11), we see that

Xk� =
∫ L1

0
dλ1

∫ L2

0
dλ2 · · ·

∫ Ln

0
dλn

∫ 2π

0
dθ1

∫ 2π

0
dθ2 · · ·

∫ 2π

0
dθn

×
∫

U(n)

d�n(V )V · diag
(
rk+�

1 ei(k−�)θ1 , rk+�
2 ei(k−�)θ2 , . . . , rk+�

n ei(k−�)θn
) · V ∗

=
∫

U(n)

d�n(V )V · diag
(
x1

k !, x2
k !, . . . , xn

k !
) · V ∗δk�

=
n∑

i=1

xi
k!
∫

U(n)

d�n(V )V |ei〉〈ei |V ∗δk�

where {ei}ni=1 is the canonical orthonormal basis of C
n:

e1 =


1
0
...

0

 e2 =


0
1
...

0

 · · · en =


0
0
...

1

 .

From the general orthogonality relations, holding for compact groups (see, e.g., [2]), we know
that ∫

U(n)

d�n(V )V |ei〉〈ei |V ∗ = 1

n
In ∀i

from which (7.14) follows. �

Setting Fk(Z) = Zk/
√

qk , where now qk = [∑n
i=1 xi

k!
] /

n, we immediately see that∫
D

dν(Z)Fk(Z)F�(Z)∗ = δk�In. (7.15)

The associated VCS are easy to construct. Indeed, we have

Theorem 7.2. The vectors

|Z; i〉 = N (Z)−
1
2

∞∑
k=0

Zk

√
qk

χi ⊗ φk N (Z) =
∞∑

k=0

Tr[|Z|2k]

qk

(7.16)

for Z ∈ D and i = 1, 2, . . . , n, form a family of VCS in C
n ⊗ H.

In particular, if we take

Li = ∞ dλi(r) = 1

π
e−r2

r dr i = 1, 2, . . . , n (7.17)

then

D = Onor
n � C

n × U(n) qk = k! and N (Z) = eTr[|Z|2] (7.18)
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while the measure dν becomes

dν(Z) = e−Tr[|Z|2]

(2π i)n

n∏
j=1

dzj ∧ dzj d�n zj = rj eiθj j = 1, 2, . . . , n. (7.19)

The corresponding VCS

|Z; i〉 = e− 1
2 Tr[|Z|2]

∞∑
k=0

Zk

√
k!

χi ⊗ φk i = 1, 2, . . . , n. (7.20)

are then the analogues of the canonical coherent states (1.1) over this domain, which we now
analyse in some detail.

The VCS (7.20) satisfy the resolution of the identity,

1

(2π i)n

n∑
i=1

∫
Onor

n

n∏
j=1

dzj ∧ dzj d�n(V ) e−Tr[|Z|2]|Z; i〉〈Z; i| = In ⊗ IH. (7.21)

The associated reproducing kernel is

K(Z∗,Z′) =
∞∑

k=0

[Z∗]k[Z′]k

k!
(7.22)

which satisfies K(Z∗,Z) > 0, implying that the VCS (7.20), for fixed Z and i = 1, 2, . . . , n,
are linearly independent. Furthermore

1

(2π i)n

n∑
i=1

∫
Onor

n

n∏
j=1

dz′′
j ∧ dz′′

j d�n(V
′′) e−Tr[|Z′′|2]K(Z∗,Z′′)K(Z′′∗,Z′) = K(Z∗,Z′).

(7.23)

Introducing next the usual creation and annihilation operators, a†, a on H,

a†φn =
√

n + 1φn+1 aφn = √
nφn−1

we note that

Zkχi ⊗ φk = (Z ⊗ a†)k√
k!

χi ⊗ φ0 and eZ∗⊗aχi ⊗ φ0 = χi ⊗ φ0. (7.24)

Furthermore, since

[Z∗ ⊗ a,Z ⊗ a†] = V · diag
(
r2

1 , r2
2 , · · · , r2

n

) · V ∗ ⊗ IH (7.25)

and since both Z and Z∗ commute with V · diag
(
r2

1 , r2
2 , · · · , r2

n

) · V ∗ (this is clear from the
form of Z given in (7.10)), we may use the well-known Baker–Campbell–Hausdorff identity,

eA+B = e− 1
2 [A,B] eA eB

which holds when both A and B commute with [A,B], to get

D(Z) := eZ⊗a†−Z∗⊗a = e− 1
2 V ·diag(r2

1 ,r2
2 ,...,r2

n )·V ∗
eZ⊗a†

e−Z∗⊗a. (7.26)

Combining (7.20), (7.24) and (7.26), we finally obtain

|Z; i〉 = e− 1
2 V T V ∗

D(Z)χi ⊗ φ0 Z ∈ Onor
n (7.27)

where T is the diagonal matrix

T = diag(a1, a2, . . . , an) ai = Tr[|Z|2] − r2
i . (7.28)

The operator D(Z) is unitary on C
n ⊗ H and may also be written in the suggestive form

D(Z) = V · diag(D(z1),D(z2), . . . ,D(zn)) · V ∗ zj = rj eiθj (7.29)
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where D(z) = eza†−za, z ∈ C, is the so-called displacement operator, defined on H. By
analogy we shall refer to D(Z) as the matrix displacement operator. Since the D(z), z ∈ C,
realize a unitary projective representation of the Weyl–Heisenberg group, for each fixed
V ∈ U(n), the operators D(Z) realize an n-fold reducible projective representation of this
group on C

n ⊗ H. Equation (7.27) is the analogue of the relation |z〉 = D(z)φ0, which holds
for the canonical coherent states (1.1).

The analysis of section 6 can also be repeated here almost verbatim. The map
W : C

n ⊗ H −→ C
n ⊗ L2

(
Onor

n , dν
)
, where

(WΨ)(Z∗)i = e
1
2 Tr[|Z|2]〈Z; i|Ψ〉 i = 1, 2, . . . , n (7.30)

is an isometric embedding of C
n ⊗ H onto a (closed) subspace of C

n ⊗ L2
(
Onor

n , dν
)
, which

we denote by Hnor. To study the nature of this subspace, let us write elements in it as
F = ∑n

�=1 χ�F�, with F� ∈ L2
(
Onor

n , dν
)
. Setting Ψ = ∑n

�=1 χ�ψ�, ψ� ∈ H, and F = WΨ,

we have

Fi (Z
∗) = N (Z)

1
2 〈Z; i|Ψ〉.

For � = 1, 2, . . . , n, let f� denote the analytic function

f�(z) =
∞∑

k=0

〈φk|ψ�〉√
k!

zk z ∈ C (7.31)

and f =∑n
�=1 χ�f�. Let Pj (V ) be the one-dimensional projection operator (on C

n),

Pj (V ) = V |χj 〉〈χj |V ∗ j = 1, 2, . . . , n. (7.32)

Then once again one can show that,

F(Z∗) =
n∑

j=1

Pj (V )f(zj ) (7.33)

where the zj = rj eiθj are the variables appearing in the decomposition of the matrix Z in
(7.10). The above relation should be compared with (6.9). Thus, Hnor consists of linear
combinations of anti-analytic functions in the variables zj and square integrable with respect
to the measure dν in (7.19). It is now abundantly clear that all these results reduce to their
well-known counterparts for the canonical coherent states (1.1) when n = 1.

In the above example with normal matrices, putting the additional restriction, det[Z] �= 0,
one could obtain a vectorial version of the coherent states on the cylinder introduced in
[19]. Also, in the spirit of that same paper, we intend to employ the method of coherent
state quantization to arrive at representations of the principal series of different coverings of
SL(2, R). Currently, vector coherent states over the domain (7.18) are being employed to
quantize a number of classical systems. for example, for the lowest dimensional cases, n = 1
(two-dimensional physics with magnetism), n = 2 (phase space of a system moving on the
manifold U(2)), n = 3 (phase space of a system moving in ordinary space with U(3) internal
symmetry), n = 4 (twistor geometry and conformal symmetry), etc, a programme is underway
to study the ensuing quantizations. We plan to report on these in future publications.

8. Discussion

As mentioned earlier, we have adopted in this paper a very general definition of vector coherent
states, which, as we have tried to demonstrate, makes a wide variety of applications possible.
The assumption of a resolution of the identity is useful in many physical applications. In the
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theory of quantization using coherent states (see, e.g., [4, 17, 27]), this assumption reflects
the probability interpretation of quantum mechanics for localization on phase space. Also, as
demonstrated in [1], this assumption ensures that when vector coherent states are built from a
group representation, as a generalization of the Perelomov technique [29], the representations
in question are subrepresentations of induced representations (in the sense of Mackey). This
is the situation which prevails, for example, in the case of square-integrable representations
of the symplectic groups, as discussed in [33]. Moreover, in the context of nonlinear coherent
states and within the Klauder formalism, this assumption is routinely made. Consequently, our
definition also includes within its scope standard coherent states, built out of square-integrable
group representations and coherent states associated with Hamiltonians with discrete spectra,
as introduced in [18].

We end this discussion by quickly demonstrating how the definition of vector coherent
states given here is able, for example, to yield Perelomov-type coherent states for compact
groups [29]. Let G be a compact Lie group and U(g), g ∈ G, a unitary irreducible
representation of it on the (finite dimensional) Hilbert space K, of dimension d. In the
definition of VCS given in (2.4), let H = C and let η be any vector in K, normalized so that
‖η‖4 = d. Set F(g) = U(g)|η〉〈η| and let dν be the normalized Haar measure of G. Then
(2.1) reduces to N = d, and by Schur’s lemma, condition (2.2) is seen to imply∫

G

dν(g)U(g)|η〉〈η|U(g)∗ = IK. (8.1)

Using (2.4) to define VCS, we immediately see that these are given by |g〉 = U(g)η, as
expected. Of course, the integration above could be restricted to X = G/K , where K is the
stability subgroup of η, up to a phase and the coherent states defined in terms of x ∈ X instead
of g. The same procedure could clearly be applied to obtain the usual coherent states when G
is non-compact and U(g) is a square-integrable representation (see, e.g., [2]) of G and indeed,
also to obtain vector coherent states, arising from induced representations and admitting a
resolution of the identity, as worked out in [1].
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